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Abstract

In this work, the stability of conical shells made of functionally graded materials (FGMs) subject to a uniform

external pressure, which is a power function of time, has been studied. The material properties of functionally graded

shells are assumed to vary continuously through his thickness of the shell, according to a power law distribution of the

volume fractions of the constituents. The fundamental relations, the dynamic stability and compatibility equations of

functionally graded truncated conical shells are obtained first. Applying Galerkin�s method, these equations have been

transformed to a pair of time dependent differential equation with variable coefficient. This differential equation is

solved for different initial conditions by variational method by using Lagrange–Hamilton type principle. Thus, general

formulas have been obtained for the critical parameters. The results show that the critical parameters are affected by the

configurations of the constituent materials, loading parameters variations, the variation of the semi-vertex angle and

the power of time in the external pressure expression variations. Comparing results with those in the literature validates

the present analysis.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Functionally graded materials (FGMs) are increasingly being considered in various applications to

maximize strengths and integrities of many engineering structures. Functionally graded materials have

received considerable attention in many engineering applications since they were first reported in 1984 in

Japan (see Koizumi, 1993). FGMs are composite materials, microscopically inhomogeneous, in which the

mechanical properties vary smoothly and continuously from one surface to the other. This is achieved by

gradually varying the volume fraction of the constituent materials. FGMs were initially designed as thermal
barrier materials for aerospace structures and fusion reactors. FGMs are now developed for general use as

structural components in extremely high temperature environments (see Liew et al., 2002). Investigations of
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Nomenclature

Amn amplitude

Ab, Bb ðb ¼ 1–6Þ defined in Eq. (15)

C1k, C2k, C3k ðk ¼ 0; 1; 2Þ defined in Eq. (16)

C0 integration constant

d power law exponent

E, E1, E2 elastic moduli of the materials

eS , eh, eSh strain components on the reference surface of the conical shell

F1, F2 material property of the constituent�s materials
h thickness of the conical shell

i power of time in the external pressure expression

Icr critical stress impulse

jk ðk ¼ 1; 2Þ coefficient

Kd dynamic factor

MS , Mh, MSh moment resultants

m wave number in the S direction

NS , Nh, NSh forces resultants
N 0

S , N
0
h , N

0
Sh membrane forces in the fundamental configuration

n wave number in the circumferential direction

nst, nd wave numbers corresponding to the static and dynamic critical loads

Qab reduced stiffness defined in Eqs. (7)–(9)

qcrs, qcrd static and dynamic critical loads, respectively

q0, q1 loading parameter and static external pressure, respectively
�q1 defined in Eq. (36)

r1, r2 average radii of the small and large bases of the conical shell
Shf coordinate system on the reference surface of the conical shell

S the axis through the vertex on the reference surface of the cone

S1, S2 the inclined distances of the bases of the cone from the vertex

t, tcr time and critical time, respectively

T temperature in Kelvin

Vf volume fractions

w displacement of the reference surface in the inwards normal direction f
c semi-vertex angle of the cone
d1, d2 defined in Eqs. (35b) and (40), respectively

m, m1, m2 Poisson�s ratios

s dimensionless time parameter

q, q1, q2 densities of the materials

k a parameter that depends on the geometry of the conical shell

h axis lies in the circumferential direction

rS, rh, rSh stress components

x defined in Eq. (37)
nmnðtÞ, gmnðtÞ time dependent amplitudes

f the axis in the inwards normal direction of the reference surface

X defined in Eq. (35a)

Dl ðl ¼ �1; 0; 1=2Þ defined in Eq. (31)
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W stress function

Uk ðk ¼ 0; 1; 2Þ defined in Eq. (31)
K defined in Eq. (21)

K1, K2 defined in Eqs. (29a) and (29b), respectively

P potential energy defined in Eq. (31)
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FGM cylindrical shells under different mechanical or thermal loading are limited in number. Studies on
FGMs have been extensive but are largely confined to analysis of thermal stress and deformation (see

Obata and Noda, 1994; Takezono et al., 1996). Birman (1995) presented a formulation of the stability

problem for functionally graded hybrid composite plates, where a micromechanical model was employed to

solve the buckling problem for a rectangular plates subjected to uniaxial compression. Feldman and Ab-

oudi (1997) studied elastic bifurcation buckling of FG plates under in-plane compressive loading. In this

work the assumed that grades of material properties throughout the structure are produced by a spatial

distribution of the local reinforcement volume fraction. Praveen and Reddy (1998) investigated the re-

sponse of functionally graded ceramic-metal plates using a plate finite element that accounts for the
transverse shear strains, rotary inertia and moderately large rotations in the von Karman sense. The static

and dynamic response of the functionally graded plates was investigated by varying the volume fraction of

the ceramic and metallic constituents using a simple power law distribution. Loy et al. (1999) presented a

free vibration analysis of simply supported cylindrical thin shells made of FGM compound of stainless steel

and nickel. Reddy (2000) developed theoretical formulations for thick FGM plates according to the higher-

order shear deformation plate theory. Then Pradhan et al. (2000) extended this work to the case of FGM

cylindrical thin shells under various boundary conditions. Ng et al. (2001) studied the parametric resonance

or dynamic stability of FGM cylindrical thin shells under periodic axial loading. In the forgoing studies,
Reddy and his co-workers developed a simple theory, in which the material properties are graded in the

thickness direction according to a volume fraction power law distribution, but their numerical results were

only for the simple case of an FGM shell in a constant thermal environment. Woo and Mequid (2001) gave

an analytical solution for large deflection of thin FGM plates and shallow shells. In their studies the

thermal load considered arises from the one dimensional steady heat conduction in the plate thickness

direction, but the material properties are temperature independent. Pitakthapanaphong and Busso (2002)

proposed a self-consistent constitutive framework to describe the behavior of a generic three-layered system

containing a functionally graded material (FGM) layer subjected to thermal loading. Shen (2002) presented
a post-buckling analysis for a functionally graded cylindrical thin shell of finite length subjected to external

pressure and thermal environments. Han et al. (2002) studied transient responses in a functionally graded

cylindrical shell to a point load and Zhang et al. (2003) studied transient dynamic analysis of a cracked

functionally graded material by a BIEM. Yang and Shen (2003) investigated large deflection and post-

buckling responses of functionally graded rectangular plates under transverse and in-plane loads by using a

semi-analytical approach.

Thin conical shells composed of different materials have popularity in airspace industry as structu-

ral element so; studies on vibration and stability of conical shells are extensive. Many of the studies
are for isotropic and composite shells. Among those who have carried out studies on the vibration and

stability of conical shells include Mushtari and Sachenkov (1958), Singer (1961, 1966), Tani (1973),

Massalas et al. (1981), Irie et al. (1984), Tong et al. (1992), Tong (1993), Babich (1999), and Lam

and Hua (1999).

The stability computation of the conical shells under the load that effects for a short time, either depends

on dynamic instability criterions and the rule of that load depending on time (form of the impulse). In the

solutions of stability problems of conical shells, sometimes obtaining the analytical solutions are impossible
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due to the difficulties occurring because of the real forms of the influenced loads. According to this, in

practice, simple analytical expressions certainly approximate to the real rule of the load change depend on

time are used. For example, in some cases effects of the wind and fluid pressure are expressed as the power

function of time. There are limited numbers of publications about the stability of thin conical shells under
the load depending power function of time. In some of these studies, external pressure is taken into con-

sideration (Shumik, 1973; Sachenkov and Klementev, 1980; Sofiyev and Aksogan, 2002; Sofiyev, 2003).

Studies on the stability of conical shells made of FGMs under an external pressure, which is a power

function of time, have not been seen in the literature.

In this paper, the stability of functionally graded truncated conical shells subjected to external pressure

varying as a power function of time is studied, for different initial conditions by variational method by using

Lagrange–Hamilton type principle.
2. Theoretical development

In Fig. 1 is seen a truncated conical shell made of FGM completed to a full cone. The coordinate system

is chosen such that the origin O is at the vertex of the whole cone, on the reference surface of the shell, and
the S axis lies on the curvilinear reference surface of the cone, the h axis lies in the circumferential direction

on the reference surface of the cone and the f axis, being perpendicular to the plane of the first two axes, lies

in the inwards normal direction of the cone. The average radii of the small and large bases of the conical

shell are r1 and r2, and the distances from the vertex to the small and large bases are S1 and S2, respectively,

and the semi-vertex angle is c.
In order to accurately model the material properties of functionally graded materials, the properties

must be both temperature and position dependent. This is achieved by using a simple rule of mixtures for

the stiffness parameters coupled with the temperature dependent properties of the constituents. The volume
fraction is a spatial function and the properties of the constituents are functions of the temperature. The

combination of these functions gives rise to the effective material properties of functionally graded materials

and can be expressed as
Fig. 1. The geometry and coordinate system of a truncated conical shell.
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F ¼ F1Vf1 þ F2Vf2 ð1Þ

in which F1 and F2 are, respectively the material property of the constituents materials, Vf1 and Vf2 are the
volume fractions of the constituents materials and are related by
Vf1 þ Vf2 ¼ 1 ð2Þ

We assume the volume fraction follows a simple power law as
Vf ¼ ð�f þ 0:5Þd ; �f ¼ f=h ð3Þ

where volume fraction index d P 0 dictates the material variation profile through the shell thickness and

may be varied to obtain the optimum distribution of component materials. It is noted that similar definition

may be found in Ng et al. (2001), but is for Vf . From Eqs. (1)–(3), the effective elastic modulus Eð�nÞ,
Poisson�s ratio mð�nÞ and density qð�nÞ of an FGM shell can be written as
Eð�nÞ ¼ ðE1 � E2Þð�f þ 0:5Þd þ E2;

mð�nÞ ¼ ðm1 � m2Þð�f þ 0:5Þd þ m2;

qð�nÞ ¼ ðq1 � q2Þð�f þ 0:5Þd þ q2

ð4Þ
where E1, m1, q1 and E2, m2, q2 are the elastic modulus, Poisson�s ratio and density of the material 1 and
material 2, respectively. From these equations the followings are obtained:
E ¼ E1; m ¼ m1; q ¼ q1 at �f ¼ 0:5

E ¼ E2; m ¼ m2; q ¼ q2 at �f ¼ �0:5

(
ð5Þ
The material properties vary continuously from material 2 at the inner surface of the conical shell to

material 1 at the outer surface of the conical shell.

According to the above distribution described in Eq. (5), the inner surface of the conical shell is ceramic

rich and the outer surface is metal rich. We shall name this type A. For a conical shell that is metal rich at

the inner surface and ceramic rich at the outer surface, which we shall name Type B.

Therefore, the material properties along the thickness of the shells, such as elastic modulus Eð�nÞ,
Poisson�s ratio mð�nÞ can be determined according to Eq. (4). With the help of these material properties, the

stress–strain relations for thin conical shells can be determined as,
rS

rh

rSh

0
B@

1
CA ¼

Q11 Q12 0

Q12 Q22 0

0 0 Q66

2
64

3
75

eS � o2w
oS2

eh � 1
S2

o2w
ou2 � 1

S
ow
oS

eSh � 1
S

o2w
oSou þ 1

S2
ow
ou

0
BB@

1
CCA ð6Þ
where, u ¼ h sin c, rS , rh and rSh are the stresses components, eS , eh and eSh are the strains components on

the reference surface, w is the displacement of the reference surface in the normal direction, positive towards

the axis of the cone and assumed to be much smaller than the thickness and Qab ða; b ¼ 1; 2; 6Þ are defined

as:
Q11 ¼ Q22 ¼
ðE1 � E2Þð�f þ 0:5Þd þ E2

1� ½ðm1 � m2Þð�f þ 0:5Þd þ m2�2
; ð7Þ

Q12 ¼
�
ðE1 � E2Þ

�
�f þ 0:5

�d þ E2

��
ðm1 � m2Þð�f þ 0:5Þd þ m2

�
1� ½ðm1 � m2Þð�f þ 0:5Þd þ m2�2

; ð8Þ
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Q66 ¼
ðE1 � E2Þð�f þ 0:5Þd þ E2

2 1þ ðm1 � m2Þ �f þ 0:5
� �d

þ m2

� � ð9Þ
It is assumed that a uniform external pressure varying as a power function of time as follows acts the

conical shell on:
N 0
S ¼ �0:5� Sðq1 þ q0tiÞ tan c; N 0

h ¼ �Sðq1 þ q0tiÞ tan c; N 0
Sh ¼ 0 ð10Þ
where N 0
S , N

0
h , N

0
Sh are the membrane forces in the fundamental configuration, q0 is the loading parameter,

q1 is the static external pressure, i is a positive whole number power which expresses the time dependence of

the external pressure satisfying iP 1 and t is time coordinate.
The force and moment resultants can be calculated using the following expression,
ðNS ;Nh;NShÞ ¼ h
Z 0:5

�0:5

ðrS; rh;rShÞd�f; ðMS ;Mh;MShÞ ¼ h2

Z 0:5

�0:5

ðrS ;rh; rShÞ�fd�f ð11Þ
If Airy�s stress function W is introduced such that,
NS ¼
1

S2

o2W
ou2

þ 1

S
oW
oS

; Nh ¼
o2W
oS2

; NSh ¼ � 1

S
o2W
oSou

þ 1

S2

oW
ou

ð12Þ
then the dynamic stability and compatibility equations can be reduced to
L1ðW;wÞ 	 A2

o4W
oS4

þ 2A2

S
o3W
oS3

þ S cot c � A2

S2

o2W
oS2

þ A2

S3

oW
oS

þ A2

S4

o4W
ou4

þ 2ðA1 � A5Þ
S2

o4W
oS2ou2

þ 2ðA5 � A1Þ
S3

o3W
oSou2

þ 2ðA1 � A5 þ A2Þ
S4

o2W
ou2

� A3

S4

o4w
ou4

� 2ðA4 þ A6Þ
S2

o4w
oS2ou2

þ 2ðA4 þ A6Þ
S3

o3w
oSou2

� q1 þ q0ti

S cot c

�
þ 2ðA4 þ A6 þ A3Þ

S4

�
o2w
ou2

� A3

o4w
oS4

� 2A3

S
o3w
oS3

þ A3

S2

�
� ðq1 þ q0tiÞS

2 cot c

�
o2w
oS2

� q1 þ q0ti

cot c

�
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S3

�
ow
oS

� qth
o2w
ot2

¼ 0 ð13Þ

L2ðW;wÞ 	 B1

S4

o4W
ou4

þ 2ðB5 þ B2Þ
S2

o4W
oS2ou2

� 2ðB5 þ B2Þ
S3
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oSou2
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S4
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ou2
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S3
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oS
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S
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� B4
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� 2ðB6 � B3Þ
S2

o4w
oS2ou2

þ 2ðB6 � B3Þ
S3

o3w
oSou2

þ 2ðB6 � B3 � B4Þ
S4

o2w
ou2

� B4

S3

ow
oS

þ B4

S2

�
þ cot c

S

�
o2w
oS2

� 2B4

S
o3w
oS3

� B4

o4w
oS4

¼ 0 ð14Þ
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in which expressions Ab, Bb ðj ¼ 1–6Þ and qt are defined as follows:
A1 ¼ C11B1 þ C21B2; A2 ¼ C11B2 þ C21B1; A3 ¼ C11B3 þ C21B4 þ C12;

A4 ¼ C11B4 þ C21B3 þ C22; A5 ¼ C61B5; A6 ¼ C61B6 þ C62; B1 ¼ C10D;

B2 ¼ �C20D; B3 ¼ ðC20C21 � C11C10ÞD; B4 ¼ ðC20C11 � C21C10ÞD; B5 ¼ 1=C60;

B6 ¼ C61=C60; D ¼ 1=½ðC10Þ2 � ðC20Þ2�; qt ¼
Z 0:5

�0:5

½ðq1 � q2Þð�f þ 0:5Þd þ q2�d�f ð15Þ
in which expressions C1k, C2k and C6kðk ¼ 0; 1; 2Þ are defined as follows:
C1k ¼ hkþ1

Z 0:5

�0:5

�fk
ðE1 � E2Þð�f þ 0:5Þd þ E2

1� ½ðm1 � m2Þð�f þ 0:5Þd þ m2�2
d�f; ð16aÞ

C2k ¼ hkþ1

Z 0:5

�0:5

�fk
½ðE1 � E2Þð�f þ 0:5Þd þ E2�½ðm1 � m2Þð�f þ 0:5Þd þ m2�

1� ½ðm1 � m2Þð�f þ 0:5Þd þ m2�2
d�f; ð16bÞ

C6k ¼ hkþ1

Z 0:5

�0:5

�fk
ðE1 � E2Þð�f þ 0:5Þd þ E2

1þ ðm1 � m2Þð�f þ 0:5Þd þ m2
d�f ð16cÞ
3. Solution of the problem

Since the conical shell is considered to be simply supported along the peripheries of both bases, the

displacement and stress functions, w and W, can be chosen as follows:
w ¼
X
m

X
n

nmnðtÞekr sinm1r cos n1u ð17Þ

W ¼
X
m

X
n

gmnðtÞS2e
ðkþ1Þr sinm1r cos n1u ð18Þ
where m1 ¼ mp= lnðS2=S1Þ, r ¼ lnðS=S2Þ, n1 ¼ n= sin c, nmnðtÞ and gmnðtÞ are variations of time dependent

amplitudes, m is the wave number in the S direction, n is the wave number in the circumferential direction, k
is the parameter dependent on the geometry of the conical shell and 1:26 k6 2:0 (see Sofiyev, 2003).

After applying r ¼ lnðS=S2Þ transformation to system of equations (13) and (14) and applying Galerkin
method the following equations obtained as
Z 2p sin c

0

Z 0

� lnðS2=S1Þ
L1ðW;wÞwS2

2e
2r drdu ¼ 0

Z 2p sin c

0

Z 0

� lnðS2=S1Þ
L2ðW;wÞWS2

2e
2r drdu ¼ 0

ð19Þ
The equations obtained after writing expressions (17) and (18) in the system of equation (19) and
integration, by taking derivatives with respect to variables u and S, each at a time, it is noted that, the

functions involved in them should be steeply increasing with respect to u and varying slowly with respect to

S. For m ¼ 1, taking above properties and the terms nmnðtÞ and gmnðtÞ from the series into consideration,

neglecting small terms and eliminating gmnðtÞ from the equations, thus obtained, one gets
d2nmnðsÞ
ds2

þ KðsÞnmnðsÞ ¼ 0 ð20Þ
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in which t ¼ tcrs, tcr being the critical time and s being the dimensionless time parameter such that 06 s6 1.

In Eq. (20) the following definitions apply:
KðsÞ ¼ t2cr
qthS

2
2

A3

��
� A2B4

B1

�
D�1n4

1

S2
2

þ m2
2

n4
1

D0

B1

cot2 c � n2
1D1=2ðq1 þ q0ticrs

iÞS2 tan c

�
ð21Þ

m2
2 ¼ ðm2

1 þ k2Þðm2
1 þ k2 � 1Þ ð22Þ

Dl ¼ ½1� ðS1S�1
2 Þ2ðkþlÞ�½m2

2 þ ðk þ 1Þ2�ðk þ 1Þ
½1� ðS1S�1

2 Þ2ðkþ1Þ�½m2
2 þ ðk þ lÞ2�ðk þ lÞ

; l ¼ �1; 0; 1=2 ð23Þ
The solution of this problem is transformed to the solution of second order differential equation with

variable coefficient dependent on time that satisfies the initial condition as in the following:
n ¼ 0;
on
os

¼ 0 when s ¼ 0 ð24Þ
Because of ðn; sÞ curve has a maximum at s ¼ 1 the initial condition is taken up as,
n ¼ 0 when s ¼ 0 and
onð1Þ
os

¼ 0 when s ¼ 1 ð25Þ
Eq. (20) is solved by variational method by using Lagrange–Hamilton type principle. The approximating

functions satisfying (24) and (25) has been chosen as a first approximation in the following form:
nmnðsÞ ¼ AmnnðsÞ ¼ Amne
j1ss2½ðj1 þ 3Þðj1 þ 2Þ�1 � s� ð26Þ

nmnðsÞ ¼ AmnnðsÞ ¼ Amne
j2ss½ðj2 þ 2Þðj2 þ 1Þ�1 � s� ð27Þ
The minimum value of critical load is dependent on selection of the function nðsÞ so, it is dependent on

the values of jk ðk ¼ 1; 2Þ coefficient. It is determined numerically that after the computations, lest one of

the minimum values of critical load corresponds to jk ¼ iþ 1 ðk ¼ 1; 2Þ. Here, Amn is the unknown dis-

placement amplitude.

Multiplying Eq. (20) by n0
sðsÞ then after integration, the following equation is obtained:
dnðsÞ
ds

� �2

þ K1½nðsÞ�2 � 2K2

Z
nðsÞ dnðsÞ

ds
si ds ¼ C0 ð28Þ
where C0 is integration constant and it is assumed that the initial conditions that taken up into consider-

ation is equal to zero. Besides, in any points of interval 0 < s < 1, n0
sðsÞ is not equal to zero and the fol-

lowing definitions apply:
K1 ¼
t2cr

qthS
2
2

A3

��
� A2B4

B1

�
D�1

S2
2

n4
1 þ

m2
2

n4
1

D0

B1

cot2 c � q1n2
1D1=2S2 tan c

�
ð29aÞ

K2 ¼
q0n2

1t
2þi
cr D1=2 tan c

qthS2

ð29bÞ
Substituting Eqs. (26) and (27) in (28), then after integration in 06 s6 1, for Lagrange–Hamilton type

functional the following expression is obtained:
P ¼ Amn
U1qthS

4
2

t2crn
2
1 tan c

�
� U2q0ticrS

3
2D1=2 þ U0 A3

��
� A2B4

B1

�
D�1

tan c
n2
1 þ

S2
2m

2
2D0

B1 tan
3 c

1

n6
1

� q1D1=2S3
2

��
ð30Þ



Table 1

The values of Uk ; k ¼ 0; 1; 2 for different values power of time i

i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4

nðsÞ ¼ ej1ss2½ðj1 þ 3Þðj1 þ 2Þ�1 � s�
U0 0.8859 3.5645 15.809 75.2705

U1 4.6561 24.700 142.836 870.4636

U2 0.5789 1.8139 6.8670 29.3800

nðsÞ ¼ ej2ss½ðj2 þ 2Þðj2 þ 1Þ�1 � s�
U0 2.086 7.0527 27.7911 121.533

U1 6.678 30.8768 168.032 992.333

U2 1.1430 2.9326 9.9737 39.916
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where
U0 ¼
Z 1

0

½nðsÞ�2 ds; U1 ¼
Z 1

0

½n0
sðsÞ�

2
ds; U2 ¼ 2

Z 1

0

Z s

0

gin0
sðgÞnðgÞdgds ð31Þ
The values of the Uk, k ¼ 0; 1; 2 given in Table 1.

During in finite time, there may be no agreement in the work done by external forces and inertia force

and the minimum value of potential energy. According to this, being the minimum condition in respect of

unknown amplitude Amn of the functional P, must supported by being the minimum condition in respect of

n2
1 wave number of the functional P. These two conditions gives the following two algebraically equations

dependent on tcr and n1:
oP
oAmn

¼ U1qthS
4
2

t2cr tan c
1

n2
1

� U2q0ticrS
3
2D1=2 þ U0 A3

��
� A2B4

B1

�
D�1

tan c
n2
1 þ

S2
2m

2
2D0

B1 tan
3 c

1

n6
1

� q1D1=2S3
2

�
¼ 0 ð32Þ

oP
on2

1

¼ U0 A3

��
� A2B4

B1

�
D�1

tan c
� 3S2

2m
2
2D0

B1 tan
3 c

1

n8
1

�
� U1qthS

4
2

t2cr tan c
1

n4
1

¼ 0 ð33Þ
Eliminating tcr from Eqs. (32) and (33), the following equation is obtained:
ð1� 3X Þi=2ð1� X � 0:5�q1X 1=4Þ ¼ q0x
i=2X ð1þiÞ=4 ð34Þ
where the following definitions apply:
X ¼ d1

cot2 c
n8
1

; ð35aÞ

d1 ¼
m2

2S
2
2

ðA3B1 � A2B4Þ
D0

D�1

; ð35bÞ

�q1 ¼
D1=2S

5=2
2 B1=4

1 q1

D1=4
0 ½ðA3B1 � A2B4ÞD�1�3=4 cot3=2 c

; ð36Þ

x ¼ U1U
2=i
2 qthðD1=2Þ2=iSð3iþ5Þ=i

2 Bð2þiÞ=i
1

22=iUð2þiÞ=i
0 ½m2

2D0�ð1þiÞ=ð2iÞ½ðA3B1 � A2B4ÞD�1 cot
2 c�ð3þiÞ=ð2iÞ ð37Þ
For q1 ¼ 0 and large values of the loading parameters, solving Eq. (34) for X and by putting this

expression in (35) and taking the relation n1 ¼ n= sin c into consideration, the following expression is ob-
tained:
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n2
d ¼

1ffiffiffi
2

p d1=4
1 q1=ð1þiÞ

0 xi=ð2þ2iÞ sin1=2ð2cÞ sin c ð38Þ
where the wave number nd, which is dependent on the way the dynamic load varies, characterizes the form

of loss of stability of the shell under the dynamic load.

Substituting expression (38) in Eq. (32), the dynamic critical load is found as follows:
qcrd ¼ q0ticr ¼
2d2U0

U2

q1=ð1þiÞ
0 xi=ð2þ2iÞ ð39Þ
where
d2 ¼
D1=4

0

D1=2

m1=2
2 D3=4

�1 ðA3B1 � A2B4Þ3=4

B1S
5=2
2

cot3=2 c ð40Þ
In the static case ðtcr ! 1; q0 ! 0Þ, from Eq. (33) the following equation is found for the wave number

corresponding to the static critical load:
n2
st ¼ 0:750:25d1=4

1 sin1=2ð2cÞ sin c ð41Þ
Substituting expression (41) in Eq. (32) and replacing q0ticr=U0, the static critical load is found as
qcrs ¼
4d2

33=4
ð42Þ
and, from the definition Kd ¼ qcrd=qcrs, the dynamic factor is given as
Kd ¼
33=4U0

2U2

q1=ð1þiÞ
0 xi=ð2þ2iÞ ð43Þ
The critical time and critical stress impulse can be found
tcr ¼
2d2U0

U2

� �1=i

q1=ð1þiÞ
0 x1=ð2þ2iÞ ð44Þ

Icr ¼
Z tcr

0

q0ti dt ¼
2U0d2

U2

� �ð1þiÞ=i x1=2

1þ i
ð45Þ
4. Numerical computations and results

The ceramic material used in this study is silicon nitride and the metal material used is nickel. The

densities and Poisson�s ratios of the materials are in this case independent of the temperature. The density

of silicon nitride is taken to be 2370 (kg/m3) and that of nickel 8900 (kg/m3). The Poisson�s ratio is 0.24 for

silicon nitride and 0.31 for nickel. The elastic moduli are however, temperature dependent and are obtained

from Ng et al. (2001) and Touloukian (1967) as
Esn ¼ 348:43� 109ð1� 3:070� 10�4T þ 2:160� 10�7T 2 � 8:946� 10�11T 3Þ ð46Þ

Eni ¼ 223:95� 109ð1� 2:794� 10�4T � 3:998� 10�9T 2Þ ð47Þ
where Esn and Eni are the elastic moduli (in Pa) of silicon nitride and nickel, respectively, and T ¼ 300 K is

the temperature in Kelvin.



Table 2

Variation of the critical parameters with semi-vertex angle c for q0 ¼ 225 (MPa/s) (nð0Þ ¼ 0, n0
sð1Þ ¼ 0, nðsÞ ¼ e2ss½3=2� s�)

c dSN ¼ 0 Type A material dN ¼ 0

d ¼ 0:5 d ¼ 1 d ¼ 2 d ¼ 3 d ¼ 4

qcrd (MPa)

30� 0.0791 0.0768 0.0744 0.07123 0.0694 0.0682 0.0629

45� 0.0715 0.0694 0.0672 0.06437 0.0627 0.0616 0.0569

60� 0.0601 0.0583 0.0565 0.05413 0.0527 0.0518 0.0478

Icr � 105 (MPa s)

30� 13.895 13.107 12.2981 11.276 10.698 10.334 8.0803

45� 11.346 10.702 10.0413 9.2069 8.7350 8.4377 7.1875

60� 8.0224 7.5674 7.10030 6.5102 6.1766 5.9663 5.0823

Kd

30� 3.0458 2.5047 2.2937 2.0920 1.9871 1.9204 1.5919

45� 2.6378 2.1692 1.9864 1.8117 1.7209 1.6631 1.3786

60� 3.0458 2.5047 2.2937 2.0920 1.9871 1.9204 1.5919

Table 3

Variation of the critical parameters with semi-vertex angle c for q0 ¼ 225 (MPa/s) (nð0Þ ¼ 0, n0
sð1Þ ¼ 0, nðsÞ ¼ e2ss½3=2� s�)

c dSN ¼ 0 Type B material dN ¼ 0

d ¼ 0:5 d ¼ 1 d ¼ 2 d ¼ 3 d ¼ 4

qcrd (MPa)

30� 0.0791 0.0715 0.0744 0.0769 0.0781 0.0787 0.0629

45� 0.0715 0.0646 0.0672 0.0695 0.0705 0.0711 0.0569

60� 0.0601 0.0544 0.0565 0.0584 0.0593 0.0598 0.0478

Icr � 105 (MPa s)

30� 13.895 11.368 12.298 13.145 13.537 13.749 8.0803

45� 11.346 9.2817 10.141 10.733 11.053 11.226 7.1875

60� 8.0224 6.5632 7.1003 7.5894 7.8158 7.9378 5.0823

Kd

30� 3.0458 2.0752 2.2937 2.4973 2.5971 2.6597 1.5919

45� 2.6378 1.7972 1.9864 2.1627 2.2492 2.3034 1.3786

60� 3.0458 2.0752 2.2937 2.4973 2.5971 2.6598 1.5919
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The stability results for the FGM conical shell presented in Tables 2 and 3 are for simply supported
silicon nitride–nickel FGM conical shell of geometric properties r1 ¼ 2:25� 10�2 (m), r2 ¼ 8� 10�2 (m),

h ¼ 1:3� 10�4 (m), k ¼ 1:2 for both Type A and Type B materials. Results presented are for different

values of the power law exponent d and different loading parameters. Type A material, when d ¼ 0, the

shell is fully ceramic (silicon nitride) and Type B material, when d ¼ 0, the shell is fully metal (nickel).

Comparing the dynamic critical load, critical impulse and dynamic factor values in Table 2 with those in

Table 3, it can be seen that for power law exponent d > 1, the critical parameters values for a Type B

material are higher than a Type A material. For power law exponent d ¼ 1, critical parameters values for

Type A and B materials are equal. On the other hand, for power law exponent d < 1 the critical parameters
values for a Type A material are higher than a Type B material. For example, for power law exponent d ¼ 4

the dynamic critical load, critical impulse and dynamic factor for a Type B material is about 13.5%, 24.84%

and 27.8% higher than a Type A material, respectively. When the coefficient d increases, the percentages

increase a little. For the power law exponent d ¼ 0:5, the dynamic critical load, critical impulse and



Table 4

The variation of the critical parameters with both forms of nðsÞ and power of time i for c ¼ 75�

i ¼ 1, q0 ¼ 2:25� 102 MPa/s i ¼ 2, q0 ¼ 5� 104 MPa/s2 i ¼ 3, q0 ¼ 5� 107 MPa/s3

d ¼ 0:5 d ¼ 1 d ¼ 2 d ¼ 0:5 d ¼ 1 d ¼ 2 d ¼ 0:5 d ¼ 1 d ¼ 2

nð0Þ ¼ 0, n0
sð1Þ ¼ 0, nðsÞ ¼ e2ss½3=2� s�

Type A material

qcrd (MPa) 0.0420 0.041 0.039 0.0194 0.0186 0.0175 0.0217 0.021 0.0194

Kd 4.3383 3.973 3.623 2.0034 1.8153 1.6319 2.242 2.022 1.8045

Icr � 107

(MPa s)

391.71 367.5 336.9 0.380 0.3400 0.3800 0.0047 0.0042 0.0038

Type B material

qcrd (MPa) 0.039 0.041 0.042 0.018 0.019 0.0194 0.020 0.021 0.022

Kd 3.594 3.973 4.326 1.621 1.815 1.999 1.794 2.022 2.238

Icr � 107

(MPa s)

339.7 367.5 392.9 0.311 0.345 0.377 0.0038 0.0043 0.0047

nð0Þ ¼ 0, n0
sð0Þ ¼ 0, nðsÞ ¼ e2ss2½4=3� s�

Type A material

qcrd (MPa) 0.043 0.042 0.040 0.0198 0.0189 0.0179 0.0219 0.0209 0.020

Kd 4.497 4.118 3.756 2.0406 1.849 1.662 2.260 2.037 1.818

Icr � 107

(MPa s)

420.9 394.9 362.1 0.3900 0.3583 0.319 0.0048 0.0044 0.0038

Type B material

qcrd (MPa) 0.0436 0.042 0.044 0.018 0.019 0.0197 0.020 0.021 0.022

Kd 4.484 4.118 4.484 1.651 1.849 2.036 1.807 2.037 2.255

Icr � 107

(MPa s)

422.1 394.9 422.2 0.323 0.358 0.392 0.0039 0.004 0.005
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dynamic factor for a Type A material is about 7.4%, 15.3% and 20.7% higher than a Type B material,
respectively. For all power law exponent d the dynamic critical load, critical impulse and dynamic factor

fall between those for dSN and dN. It is observed that the effect of volume fractions and the configurations of

the constituent materials on dynamic factor are more important. As the semi-vertex angle c increases, the

values of the dynamic critical load and critical impulse decrease, whereas the values of the dynamic factor

decrease for c6 45� and increase for c > 45�. Variations of the elastic moduli resulting from another values

of c do not change the behavior of the critical parameters.

The variation of the dynamic critical load, critical impulse and dynamic factor of Type A and Type B

materials with different approximation function and the power of time i are presented in Table 4. The
numerical analysis for the conical shell parameters which are taken into consideration show that the

loading parameter varies approximately by the following values to become the loading dynamic: (a) when

N 0
h ¼ �q0tS tan c or i ¼ 1, namely the external pressure varies linearly depending on time, it must be in

0:84396 q̂ < 4:219, (b) when N 0
h ¼ �q0t2S tan c or i ¼ 2, namely the external pressure varies parabolic

depending on time, it must be in 4:2196 q̂ < 8:439� 102, (c) when N 0
h ¼ �q0t3S tan c or i ¼ 3, namely the

external pressure varies cubically depending on time, it must be in 8:439� 102
6 q̂6 4:219� 105. Here,

q̂ ¼ q0R1=E1h definition is valid. Consequently when the loading law changes, the values of loading

parameter changes, too. It is indicated from Table 4, for both forms of nðsÞ approximation functions, the
maximum difference between the critical parameter values is about 3%. Furthermore, both of approxi-

mation functions can be used in the same way. Besides, difference between values of the dynamic factors,

dynamic critical load and critical impulse of Type A and Type B materials increases, when i increases, for



Table 5

Comparison of critical parameters

c Experimentally (Sachenkov and

Klementev, 1980)

Numerically (Shumik, 1973) Present study

qcrd (MPa) Kd qcrd (MPa) Kd qcrd (MPa) Kd

20� 0.0575 2.880 0.0767 3.8788 0.0796 4.0259

30� 0.0726 2.690 0.0736 2.8790 0.0764 2.9882

40� 0.0810 2.700 0.0693 2.5317 0.0719 2.6277
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power law exponent d > 1. When the loading form changes and the power of time i increase, the critical
impulse values decrease in an important degree.

To validate the analysis, results for simply supported conical shells are compared in Table 5 with Shumik

(1973) that was solved numerically by using energy method, Lagrange equation and Runge–Kutta method

and with Sachenkov and Klementev (1980) that was solved experimentally. The comparisons with those

methods were carried out for the following isotropic material, shell and loading properties:
E ¼ 2:11� 105 ðMPaÞ; m ¼ 0:3; q ¼ 8� 103 ðkg=m3Þ; h ¼ 1:3� 10�4 ðmÞ;
r1 ¼ 2:25� 10�2 ðmÞ; r2 ¼ 8� 10�2 ðmÞ; i ¼ 1; q0 ¼ 225 ðMPa=sÞ; k ¼ 1:2; c ¼ 40�:
5. Conclusions

The stability of truncated conical shells of functionally graded material subjected to external pressure

varying as a power function of time was investigated. Taking the large values of loading parameters into

consideration, analytic solutions are obtained for different initial conditions for critical parameters values.

Results were found to vary significantly when material distribution was varied by changing the values of the
power law exponent, which controls the volume fraction of the different materials in the FGM shell. It was

also found that reasonable control could be achieved on the critical parameters values by correctly varying

the power law exponent. A validation of the analysis has been carried out by comparing results with those

in the literature and has found to be accurate.
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