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Abstract

In this work, the stability of conical shells made of functionally graded materials (FGMs) subject to a uniform
external pressure, which is a power function of time, has been studied. The material properties of functionally graded
shells are assumed to vary continuously through his thickness of the shell, according to a power law distribution of the
volume fractions of the constituents. The fundamental relations, the dynamic stability and compatibility equations of
functionally graded truncated conical shells are obtained first. Applying Galerkin’s method, these equations have been
transformed to a pair of time dependent differential equation with variable coefficient. This differential equation is
solved for different initial conditions by variational method by using Lagrange-Hamilton type principle. Thus, general
formulas have been obtained for the critical parameters. The results show that the critical parameters are affected by the
configurations of the constituent materials, loading parameters variations, the variation of the semi-vertex angle and
the power of time in the external pressure expression variations. Comparing results with those in the literature validates
the present analysis.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Functionally graded materials (FGMs) are increasingly being considered in various applications to
maximize strengths and integrities of many engineering structures. Functionally graded materials have
received considerable attention in many engineering applications since they were first reported in 1984 in
Japan (see Koizumi, 1993). FGMs are composite materials, microscopically inhomogeneous, in which the
mechanical properties vary smoothly and continuously from one surface to the other. This is achieved by
gradually varying the volume fraction of the constituent materials. FGMs were initially designed as thermal
barrier materials for aerospace structures and fusion reactors. FGMs are now developed for general use as
structural components in extremely high temperature environments (see Liew et al., 2002). Investigations of

Tel.: +90-246-2111243; fax: +90-246-2370859.
E-mail address: asofiyev@mmf.sdu.edu.tr (A.H. Sofiyev).

0020-7683/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2004.02.003


mail to: asofiyev@mmf.sdu.edu.tr

3412

A.H. Sofiyev | International Journal of Solids and Structures 41 (2004) 3411-3424

Nomenclature

Amn

amplitude

Ag, By (f = 1-6) defined in Eq. (15)
Clka CZka C3k (k = O, 1,2) defined in Eq (16)

Co
d

integration constant
power law exponent

E, E,, E, elastic moduli of the materials
es, ey, esp strain components on the reference surface of the conical shell

R, B

h
i
Ler

material property of the constituent’s materials
thickness of the conical shell

power of time in the external pressure expression
critical stress impulse

Jix (k=1,2) coefficient

Ky

dynamic factor

Mg, My, Mgy moment resultants

m

wave number in the S direction

Ng, Ny, Ngy forces resultants
N2, NJ, N§, membrane forces in the fundamental configuration

n

Nst, N4

roﬁ

wave number in the circumferential direction
wave numbers corresponding to the static and dynamic critical loads
reduced stiffness defined in Egs. (7)-(9)

qerss Gera Static and dynamic critical loads, respectively

q0, 91
7

r, 12
SO¢
S

Si, S
t, lor
T

4

w

Y
515 52

loading parameter and static external pressure, respectively
defined in Eq. (36)

average radii of the small and large bases of the conical shell
coordinate system on the reference surface of the conical shell
the axis through the vertex on the reference surface of the cone
the inclined distances of the bases of the cone from the vertex
time and critical time, respectively

temperature in Kelvin

volume fractions

displacement of the reference surface in the inwards normal direction {
semi-vertex angle of the cone

defined in Eqgs. (35b) and (40), respectively

v, vi, v, Poisson’s ratios

T

dimensionless time parameter

P, p1, P, densities of the materials

A
0

a parameter that depends on the geometry of the conical shell
axis lies in the circumferential direction

os, 09, 059 Stress components

w

defined in Eq. (37)

En(t)s M, (2) time dependent amplitudes

¢
X
4

I (,u:

the axis in the inwards normal direction of the reference surface
defined in Eq. (352)
—1,0,1/2) defined in Eq. (31)
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14 stress function

@, (k=0,1,2) defined in Eq. (31)

A defined in Eq. (21)

Ay, A, defined in Egs. (29a) and (29b), respectively
n potential energy defined in Eq. (31)

FGM cylindrical shells under different mechanical or thermal loading are limited in number. Studies on
FGMs have been extensive but are largely confined to analysis of thermal stress and deformation (see
Obata and Noda, 1994; Takezono et al., 1996). Birman (1995) presented a formulation of the stability
problem for functionally graded hybrid composite plates, where a micromechanical model was employed to
solve the buckling problem for a rectangular plates subjected to uniaxial compression. Feldman and Ab-
oudi (1997) studied elastic bifurcation buckling of FG plates under in-plane compressive loading. In this
work the assumed that grades of material properties throughout the structure are produced by a spatial
distribution of the local reinforcement volume fraction. Praveen and Reddy (1998) investigated the re-
sponse of functionally graded ceramic-metal plates using a plate finite element that accounts for the
transverse shear strains, rotary inertia and moderately large rotations in the von Karman sense. The static
and dynamic response of the functionally graded plates was investigated by varying the volume fraction of
the ceramic and metallic constituents using a simple power law distribution. Loy et al. (1999) presented a
free vibration analysis of simply supported cylindrical thin shells made of FGM compound of stainless steel
and nickel. Reddy (2000) developed theoretical formulations for thick FGM plates according to the higher-
order shear deformation plate theory. Then Pradhan et al. (2000) extended this work to the case of FGM
cylindrical thin shells under various boundary conditions. Ng et al. (2001) studied the parametric resonance
or dynamic stability of FGM cylindrical thin shells under periodic axial loading. In the forgoing studies,
Reddy and his co-workers developed a simple theory, in which the material properties are graded in the
thickness direction according to a volume fraction power law distribution, but their numerical results were
only for the simple case of an FGM shell in a constant thermal environment. Woo and Mequid (2001) gave
an analytical solution for large deflection of thin FGM plates and shallow shells. In their studies the
thermal load considered arises from the one dimensional steady heat conduction in the plate thickness
direction, but the material properties are temperature independent. Pitakthapanaphong and Busso (2002)
proposed a self-consistent constitutive framework to describe the behavior of a generic three-layered system
containing a functionally graded material (FGM) layer subjected to thermal loading. Shen (2002) presented
a post-buckling analysis for a functionally graded cylindrical thin shell of finite length subjected to external
pressure and thermal environments. Han et al. (2002) studied transient responses in a functionally graded
cylindrical shell to a point load and Zhang et al. (2003) studied transient dynamic analysis of a cracked
functionally graded material by a BIEM. Yang and Shen (2003) investigated large deflection and post-
buckling responses of functionally graded rectangular plates under transverse and in-plane loads by using a
semi-analytical approach.

Thin conical shells composed of different materials have popularity in airspace industry as structu-
ral element so; studies on vibration and stability of conical shells are extensive. Many of the studies
are for isotropic and composite shells. Among those who have carried out studies on the vibration and
stability of conical shells include Mushtari and Sachenkov (1958), Singer (1961, 1966), Tani (1973),
Massalas et al. (1981), Irie et al. (1984), Tong et al. (1992), Tong (1993), Babich (1999), and Lam
and Hua (1999).

The stability computation of the conical shells under the load that effects for a short time, either depends
on dynamic instability criterions and the rule of that load depending on time (form of the impulse). In the
solutions of stability problems of conical shells, sometimes obtaining the analytical solutions are impossible
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due to the difficulties occurring because of the real forms of the influenced loads. According to this, in
practice, simple analytical expressions certainly approximate to the real rule of the load change depend on
time are used. For example, in some cases effects of the wind and fluid pressure are expressed as the power
function of time. There are limited numbers of publications about the stability of thin conical shells under
the load depending power function of time. In some of these studies, external pressure is taken into con-
sideration (Shumik, 1973; Sachenkov and Klementev, 1980; Sofiyev and Aksogan, 2002; Sofiyev, 2003).
Studies on the stability of conical shells made of FGMs under an external pressure, which is a power
function of time, have not been seen in the literature.

In this paper, the stability of functionally graded truncated conical shells subjected to external pressure
varying as a power function of time is studied, for different initial conditions by variational method by using
Lagrange-Hamilton type principle.

2. Theoretical development

In Fig. 1 is seen a truncated conical shell made of FGM completed to a full cone. The coordinate system
is chosen such that the origin O is at the vertex of the whole cone, on the reference surface of the shell, and
the S axis lies on the curvilinear reference surface of the cone, the 0 axis lies in the circumferential direction
on the reference surface of the cone and the { axis, being perpendicular to the plane of the first two axes, lies
in the inwards normal direction of the cone. The average radii of the small and large bases of the conical
shell are ; and r,, and the distances from the vertex to the small and large bases are S| and S,, respectively,
and the semi-vertex angle is y.

In order to accurately model the material properties of functionally graded materials, the properties
must be both temperature and position dependent. This is achieved by using a simple rule of mixtures for
the stiffness parameters coupled with the temperature dependent properties of the constituents. The volume
fraction is a spatial function and the properties of the constituents are functions of the temperature. The
combination of these functions gives rise to the effective material properties of functionally graded materials
and can be expressed as

S

Fig. 1. The geometry and coordinate system of a truncated conical shell.
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F =FW, + R, (1)

in which F; and F are, respectively the material property of the constituents materials, 75, and V;, are the
volume fractions of the constituents materials and are related by

W+, =1 (2)
We assume the volume fraction follows a simple power law as

=({+05), [=U/h 3)

where volume fraction index d > 0 dictates the material variation profile through the shell thickness and
may be varied to obtain the optimum distribution of component materials. It is noted that similar definition
may be found in Ng et al. (2001), but is for F;. From Egs. (1)—(3), the effective elastic modulus E(¢),
Poisson’s ratio v(¢) and density p(¢) of an FGM shell can be written as

E(&) = (E) — E)(( 4 0.5) + Es,
V(&) = (=) (C+0.5) + v, (4)
p(&) = (p1 — ) (L+0.5)" + p,

where E|, v{, p; and E,, v,, p, are the elastic modulus, Poisson’s ratio and density of the material 1 and
material 2, respectively. From these equations the followings are obtained:

{E:El, V="y, p=p at {=0.5

. (5)
E=E,v=v, p=p, at{=-05

The material properties vary continuously from material 2 at the inner surface of the conical shell to
material 1 at the outer surface of the conical shell.

According to the above distribution described in Eq. (5), the inner surface of the conical shell is ceramic
rich and the outer surface is metal rich. We shall name this type A. For a conical shell that is metal rich at
the inner surface and ceramic rich at the outer surface, which we shall name Type B.

Therefore, the material properties along the thickness of the shells, such as elastic modulus E (E),
Poisson’s ratio v(&) can be determined according to Eq. (4). With the help of these material properties, the
stress—strain relations for thin conical shells can be determined as,

62
s On Qn O es_as)lV
1 2w _ 10w
op | =|0n On O eO_STETg_Eé (6)

|
Oso 0 0 Oes eso — 5 2o +s2 S

where, ¢ = 0siny, gg, gy and agy are the stresses components, es, ey and egy are the strains components on
the reference surface, w is the displacement of the reference surface in the normal direction, positive towards
the axis of the cone and assumed to be much smaller than the thickness and Q.5 (o, f = 1,2,6) are defined
as:

( E))({+0.5)" + E,
—[(vi = v2)(C+0.5)" +v*

On1=0»n= (7)

[(E1 — E)(C+0.5) + Eo] [ = v2)(C+0.5) + v)]
1= [(vi =)+ 0.5 + ]

QIZ = ) (8)
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(E, — E)((+0.5) + E,
_ d
2 |:1 =+ (V1 — V2) (C + OS) + V2:|

Oss = 9)

It is assumed that a uniform external pressure varying as a power function of time as follows acts the
conical shell on:

Ny = —0.5x S(q; + qot') tany, Ny = —S(q1 + qot')tany, Ng, =0 (10)

where NJ, Nj, N, are the membrane forces in the fundamental configuration, ¢, is the loading parameter,
q, 1s the static external pressure, i is a positive whole number power which expresses the time dependence of
the external pressure satisfying i > 1 and ¢ is time coordinate.

The force and moment resultants can be calculated using the following expression,

0.5 0.5
(s, NooNo) = [ (os,on,0s0)dE, (s, Mo Mr) = [ (o, 0)El (11
-05 -05
If Airy’s stress function ¥ is introduced such that,
1 o°% 10¥ el 1 *Y 1 oY

Ns = oo o Ny = o == ——
ST S5 Tsas MTas M T 55580 TS 6

then the dynamic stability and compatibility equations can be reduced to

@47’ 2A2 63_'1’ SCOt')/ —A2 62_11’ A2 oV A2 6‘“1’

Li(VYw) =4y —+— — 3 8S T S% 0ot
1( ,W) 26S4+ S 6S3+ S2 6S2 +S3 6S+S4 6(p4

2(141 —A5) 64‘1’ +2(A5 —Al) 63111 +2(A1 —A5 +A2) 62‘[’ A3 64W
5?2 0820¢? S3 0S0¢? S4 0p?  S§* 0¢*

2(144 +A()) a4W 2(A4 +A6) 63W . q1 + qui 2(144 +A6 —|—A3) 62_w . 64_W
S? 0S20¢? S3 0S0¢? Scoty A\ 0p2 oSt

245 O®w <A3 (g1 + qot[)S) o*w (ql + got A3) ow *w

S s S2 2coty a2\ coty 3 )as Pl
-0 (13)
Lo(® )731 W 2(Bs+By) W  2(Bs+B) ¥ 2(Bs+B,+B)PY B oV
W)= — — — — = =
n 54 0g* S2 0S20¢? S35 0S0¢? 54 op? ' S* oS
B, — By azi & 637'11_’_ 647'}/ % 64714/ 2(36 —B3) *w +2(Bé —33) Pw
§2 as2 'S ass T U'ast T S ogf 2 0S20¢2 S35 0S0¢?
J2ABo=Bi=B)@w Bidw (B coty)Pw 2w o
54 02 SPas ' \s2' s Josrt S os® tost

-0 (14)
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in which expressions Ag, By (j = 1-6) and p, are defined as follows:
A1 = CnuBi + CuBy, Ay =CuBy+ CoBy, A3 = CiBs+ By + Co,

Ay = C1 1By + Cy B3 + Cp, As = Ce1Bs, As = C1Bs + Ce2, By = CyoD,
By = —CxD, B3 = (CyCy — C11Ci0)D, By = (CxCi — CyCy)D, Bs=1/Cg,

0.5

Bs = Ce1/Ceo, D=1/[(Cio)’ = (Cn)’], p,= [05[(01 — p,)(C+0.5)" + p,]dC (15)

in which expressions Cj;, Cy and Cg(k = 0, 1,2) are defined as follows:

Cy = H! /0‘5 a_ (B — EZ)(Z + 0~5)d + E,

z dg, 16
05 1—=[(vi =)+ O.S)d + vz]z ‘ (16a)

05 7 d 7 d
o=t [ (B = E2) (€4 0.5 + Epf[(vi = va)(E+0.5)" + v 4 16b
* /4.5 : 1—[(vi =) +0.5) + ] d (165)
05 7 d
Cer — i+ o (B —£5)(C + 0.5)" + E» dr 16
o /—OASC 1 + (V] — Vz)(g + OS)d “+ v ( C)

3. Solution of the problem

Since the conical shell is considered to be simply supported along the peripheries of both bases, the
displacement and stress functions, w and ¥, can be chosen as follows:

w= Z Z & (t)€™ sinmyrcos n @ (17)

P = Z Z Ny (£)S2" V7 sin my - cos ny ¢ (18)

where m; = mn/In(S,/S)), r = In(S/S,), ny = n/siny, &,,(¢) and n,,,(7) are variations of time dependent
amplitudes, m is the wave number in the S direction, # is the wave number in the circumferential direction, A
is the parameter dependent on the geometry of the conical shell and 1.2 <1< 2.0 (see Sofiyev, 2003).

After applying » = In(S/S,) transformation to system of equations (13) and (14) and applying Galerkin
method the following equations obtained as

2msiny 0
/ / Li(P,w)wS;e* drdep = 0
0 —In($,/81)
2msiny 0 (19)
/ / L(¥, w)PS2e” drdp = 0
0 —1In(S,/81)

The equations obtained after writing expressions (17) and (18) in the system of equation (19) and
integration, by taking derivatives with respect to variables ¢ and S, each at a time, it is noted that, the
functions involved in them should be steeply increasing with respect to ¢ and varying slowly with respect to
S. For m = 1, taking above properties and the terms ¢&,,(¢) and 5,,,(¢) from the series into consideration,
neglecting small terms and eliminating 5,,,(¢) from the equations, thus obtained, one gets

d’¢,,(1)
dr?

+ A1) (t) = 0 (20)
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in which ¢ = t,1, t.; being the critical time and 7t being the dimensionless time parameter such that 0 <7< 1.
In Eq. (20) the following definitions apply:

f A2By\ Ant  m3 4y .
Al = e |\~ £y —ni4 )5, t 21
© p.hS3 [( TR, ) 2 3 nl B, cot’y — njA12(q1 + qot.,7')S> tan y (21)
m = (m} + 22)(m} + 22 = 1) )

=SS ) m3 + (o D’](2 4 1)
(1= S8V md + Gt W) (24 )

The solution of this problem is transformed to the solution of second order differential equation with
variable coefficient dependent on time that satisfies the initial condition as in the following:

=-1,0,1/2 (23)

n—

0
£E=0, af*O when 7 =0 (24)
Because of (&, 1) curve has a maximum at ¢ = 1 the initial condition is taken up as,
o¢(1)

=0 whent=0 and =0 whent=1 (25)

ot
Eq. (20) is solved by variational method by using Lagrange—Hamilton type principle. The approximating
functions satisfying (24) and (25) has been chosen as a first approximation in the following form:

& (¥) = A& (x) = AP (1 +3) (1 +2)7 =] (26)

& (1) = Amn(0) = A€ t[(2 +2) (2 + 1) —1] (27)

The minimum value of critical load is dependent on selection of the function () so, it is dependent on
the values of j; (k = 1,2) coefficient. It is determined numerically that after the computations, lest one of
the minimum values of critical load corresponds to j, =i+ 1 (k= 1,2). Here, 4, is the unknown dis-
placement amplitude.

Multiplying Eq. (20) by & (1) then after integration, the following equation is obtained:

{%&ﬂ 2/12/5 ) i g = G (28)

where C) is integration constant and it is assumed that the initial conditions that taken up into consider-
ation is equal to zero. Besides, in any points of interval 0 < t < 1, & (1) is not equal to zero and the fol-
lowing definitions apply:

[ AB\ Ay 4 my Ay,
A =—=2& A3 ———— | —- —2 Zcot’y — qnP Ay 55, t 29
=g (0550 ) St B oty g psany 2%
3 A tan y
y = 200 212 20Y s h;j; (29b)
t

Substituting Egs. (26) and (27) in (28), then after integration in 0 <t < 1, for Lagrange-Hamilton type
functional the following expression is obtained:

¢1pthS§ i o3 AzB4 A,] 2 S2 2 1
I =A4,,4 ———= — ®q0t’.S; 4 ) Ay — A S 30
{ £ntany 2qoler>r A2+ Po | | 43 B, tanyn1 + B, tan y nd I ATE (30)
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Table 1
The values of &, k=0, 1,2 for different values power of time i
i=1 i=2 i=3 i=4
&r) =i +3)(h +2)7 =1
[ 0.8859 3.5645 15.809 75.2705
@, 4.6561 24.700 142.836 870.4636
D, 0.5789 1.8139 6.8670 29.3800
&r) = t[(h +2)(h+ 1) — 1]
[ 2.086 7.0527 27.7911 121.533
@, 6.678 30.8768 168.032 992.333
D, 1.1430 2.9326 9.9737 39.916
where
1 ) 1 5 1 p1
[ <!
o= [EoPd o= [feoPdn e=2 [ [ wamandne (31)
0 0 0J0

The values of the &, k =0, 1,2 given in Table 1.

During in finite time, there may be no agreement in the work done by external forces and inertia force
and the minimum value of potential energy. According to this, being the minimum condition in respect of
unknown amplitude 4,,, of the functional IT, must supported by being the minimum condition in respect of
n? wave number of the functional I1. These two conditions gives the following two algebraically equations

dependent on ¢, and n;:

61_[ djlﬂ,th 1 ) s
= — — Dyqot'. S5 A P, Ar —
aAmn tgr tany n% 240197 1/2 + 0 3

o B, )tany B tan®y nd

ArBy
B,
oIl AzB4 A_l 3S§m§A0 1 (151,0thS§t 1
Po| |4 - il Bl
. tany nj

Eliminating ¢, from Egs. (32) and (33), the following equation is obtained:

(1=3X)"7(1 =X — 0.5, X"*) = go'/?x 1+/4
where the following definitions apply:

t2
X3 co : y’
ny
s a
(A3Bl _A2B4) A, ’
_ 41/2525/231/46]1
q1 =

A)*[(43B) — 4:B3) A1) cot?/?y

o, @g/ipt h(A 1/2)2/1' S§3i+5)/i B§2+i)/i

o= — —— —
22/i@(()2+l)/l [m%A()](l+l)/<2l>[(A3B] — 4B A, cot? y](3+1)/(2l)

g MpSi =0
By tan®y n? 1517222

(32)

(35a)

(35b)

(36)

(37)

For ¢; =0 and large values of the loading parameters, solving Eq. (34) for X and by putting this
expression in (35) and taking the relation n; = n/siny into consideration, the following expression is ob-

tained:
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514y /20 §in'/2(29) sin (38)

v

where the wave number n4, which is dependent on the way the dynamic load varies, characterizes the form
of loss of stability of the shell under the dynamic load.
Substituting expression (38) in Eq. (32), the dynamic critical load is found as follows:

; 252@0 B i

Gerd = qotlcr = Tq(l)/(1+l)wl/(2+2) (39)
p)

where

_ A m 2 A (4sBy — 45B,)™
A1 B,S)?

02 cot’?y (40)

In the static case (f,; — 0o, go — 0), from Eq. (33) the following equation is found for the wave number
corresponding to the static critical load:
n2 = 0.75°%5,/*sin'/*(2y) sin y (41)
Substituting expression (41) in Eq. (32) and replacing gt /o, the static critical load is found as
45,

Gers = m (42)
and, from the definition Ky = ¢ca/qus, the dynamic factor is given as

3Py gy
Ky = i) i/(2+2i) 43
1=, P (43)

The critical time and critical stress impulse can be found
1/i
b,
for 20,5, (1+)/i w!/2

I, = fde = 45
/0 40 { ®, 1+i (45)

4. Numerical computations and results

The ceramic material used in this study is silicon nitride and the metal material used is nickel. The
densities and Poisson’s ratios of the materials are in this case independent of the temperature. The density
of silicon nitride is taken to be 2370 (kg/m?®) and that of nickel 8900 (kg/m?). The Poisson’s ratio is 0.24 for
silicon nitride and 0.31 for nickel. The elastic moduli are however, temperature dependent and are obtained
from Ng et al. (2001) and Touloukian (1967) as

Eq = 348.43 x 10°(1 — 3.070 x 10T + 2.160 x 10772 — 8.946 x 101 7?) (46)

En = 223.95 x 10°(1 — 2.794 x 10747 — 3.998 x 10°7?) (47)

where Eg, and E,; are the elastic moduli (in Pa) of silicon nitride and nickel, respectively, and 7 = 300 K is
the temperature in Kelvin.
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Table 2

Variation of the critical parameters with semi-vertex angle y for g, = 225 (MPa/s) (£(0) =0, &.(1) =0, &(z) = €*'1[3/2 — 1)
y SN =0 Type A material dN=0

d=0.5 d=1 d=2 d=3 d=4

Yera (MPC[)
30° 0.0791 0.0768 0.0744 0.07123 0.0694 0.0682 0.0629
45° 0.0715 0.0694 0.0672 0.06437 0.0627 0.0616 0.0569
60° 0.0601 0.0583 0.0565 0.05413 0.0527 0.0518 0.0478
I, x 10° (MPas)
30° 13.895 13.107 12.2981 11.276 10.698 10.334 8.0803
45° 11.346 10.702 10.0413 9.2069 8.7350 8.4377 7.1875
60° 8.0224 7.5674 7.10030 6.5102 6.1766 5.9663 5.0823
Ky
30° 3.0458 2.5047 2.2937 2.0920 1.9871 1.9204 1.5919
45° 2.6378 2.1692 1.9864 1.8117 1.7209 1.6631 1.3786
60° 3.0458 2.5047 2.2937 2.0920 1.9871 1.9204 1.5919

Table 3

Variation of the critical parameters with semi-vertex angle y for go = 225 (MPa/s) (¢(0) =0, (1) =0, &(1) = e*'t[3/2 — 1)
y dN =0 Type B material AN—0

d=0.5 d=1 d=2 d=3 d=4

Gera (MPa)
30° 0.0791 0.0715 0.0744 0.0769 0.0781 0.0787 0.0629
45° 0.0715 0.0646 0.0672 0.0695 0.0705 0.0711 0.0569
60° 0.0601 0.0544 0.0565 0.0584 0.0593 0.0598 0.0478
I, x 10° (MPas)
30° 13.895 11.368 12.298 13.145 13.537 13.749 8.0803
45° 11.346 9.2817 10.141 10.733 11.053 11.226 7.1875
60° 8.0224 6.5632 7.1003 7.5894 7.8158 7.9378 5.0823
Ky
30° 3.0458 2.0752 2.2937 2.4973 2.5971 2.6597 1.5919
45° 2.6378 1.7972 1.9864 2.1627 2.2492 2.3034 1.3786
60° 3.0458 2.0752 2.2937 2.4973 2.5971 2.6598 1.5919

The stability results for the FGM conical shell presented in Tables 2 and 3 are for simply supported
silicon nitride-nickel FGM conical shell of geometric properties r; = 2.25 x 1072 (m), r», = 8 x 1072 (m),
h=13x10"* (m), A= 1.2 for both Type A and Type B materials. Results presented are for different
values of the power law exponent d and different loading parameters. Type A material, when d = 0, the
shell is fully ceramic (silicon nitride) and Type B material, when d = 0, the shell is fully metal (nickel).

Comparing the dynamic critical load, critical impulse and dynamic factor values in Table 2 with those in
Table 3, it can be seen that for power law exponent d > 1, the critical parameters values for a Type B
material are higher than a Type A material. For power law exponent d = 1, critical parameters values for
Type A and B materials are equal. On the other hand, for power law exponent d < 1 the critical parameters
values for a Type A material are higher than a Type B material. For example, for power law exponent d = 4
the dynamic critical load, critical impulse and dynamic factor for a Type B material is about 13.5%, 24.84%
and 27.8% higher than a Type A material, respectively. When the coefficient d increases, the percentages
increase a little. For the power law exponent d = 0.5, the dynamic critical load, critical impulse and
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Table 4

The variation of the critical parameters with both forms of &(t) and power of time i for y = 75°
i=1, qo =225 x 10> MPa/s i=2,q0=>5x 10* MPa/s? i=3,¢q0=>5x 10" MPa/s®
d=0.5 d=1 d=2 d=0.5 d=1 d=2 d=0.5 d=1 d=2

E0) = 0, &(1) = 0, &(x) = e e3/2— ]

Type A material

qera (MPa) 0.0420 0.041 0.039 0.0194 0.0186 0.0175 0.0217 0.021 0.0194

K4 4.3383 3.973 3.623 2.0034 1.8153 1.6319 2.242 2.022 1.8045

I x 107 391.71 367.5 336.9 0.380 0.3400 0.3800 0.0047 0.0042 0.0038
(MPas)

Type B material

qera (MPa) 0.039 0.041 0.042 0.018 0.019 0.0194 0.020 0.021 0.022

K4 3.594 3.973 4.326 1.621 1.815 1.999 1.794 2.022 2.238

I x 107 339.7 367.5 392.9 0.311 0.345 0.377 0.0038 0.0043 0.0047
(MPas)

£(0) = 0, £(0) = 0, &(x) = e [4/3 — 1

Type A material

qera (MPa) 0.043 0.042 0.040 0.0198 0.0189 0.0179 0.0219 0.0209 0.020

Ky 4.497 4.118 3.756 2.0406 1.849 1.662 2.260 2.037 1.818

I x 107 420.9 394.9 362.1 0.3900 0.3583 0.319 0.0048 0.0044 0.0038
(MPas)

Type B material

Gera (MPa) 0.0436 0.042 0.044 0.018 0.019 0.0197 0.020 0.021 0.022

K4 4.484 4.118 4.484 1.651 1.849 2.036 1.807 2.037 2.255

I x 107 422.1 394.9 422.2 0.323 0.358 0.392 0.0039 0.004 0.005
(MPas)

dynamic factor for a Type A material is about 7.4%, 15.3% and 20.7% higher than a Type B material,
respectively. For all power law exponent d the dynamic critical load, critical impulse and dynamic factor
fall between those for &N and d™. It is observed that the effect of volume fractions and the configurations of
the constituent materials on dynamic factor are more important. As the semi-vertex angle y increases, the
values of the dynamic critical load and critical impulse decrease, whereas the values of the dynamic factor
decrease for y <45° and increase for y > 45°. Variations of the elastic moduli resulting from another values
of y do not change the behavior of the critical parameters.

The variation of the dynamic critical load, critical impulse and dynamic factor of Type A and Type B
materials with different approximation function and the power of time i are presented in Table 4. The
numerical analysis for the conical shell parameters which are taken into consideration show that the
loading parameter varies approximately by the following values to become the loading dynamic: (a) when
NJ = —qotStany or i = 1, namely the external pressure varies linearly depending on time, it must be in
0.8439 < g < 4.219, (b) when NJ = —go*Stany or i =2, namely the external pressure varies parabolic
depending on time, it must be in 4.219 < g < 8.439 x 10%, (c) when N = —go*Stany or i = 3, namely the
external pressure varies cubically depending on time, it must be in 8.439 x 10? < §<4.219 x 10°. Here,
G = qoRi/Eh definition is valid. Consequently when the loading law changes, the values of loading
parameter changes, too. It is indicated from Table 4, for both forms of £(t) approximation functions, the
maximum difference between the critical parameter values is about 3%. Furthermore, both of approxi-
mation functions can be used in the same way. Besides, difference between values of the dynamic factors,
dynamic critical load and critical impulse of Type A and Type B materials increases, when i increases, for
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Table 5
Comparison of critical parameters
y Experimentally (Sachenkov and Numerically (Shumik, 1973) Present study
Klementev, 1980)
qerd (MPa) Kd qerd (MPa) Kd Yerd (MPa) Kd
20° 0.0575 2.880 0.0767 3.8788 0.0796 4.0259
30° 0.0726 2.690 0.0736 2.8790 0.0764 2.9882
40° 0.0810 2.700 0.0693 2.5317 0.0719 2.6277

power law exponent d > 1. When the loading form changes and the power of time i increase, the critical
impulse values decrease in an important degree.

To validate the analysis, results for simply supported conical shells are compared in Table 5 with Shumik
(1973) that was solved numerically by using energy method, Lagrange equation and Runge-Kutta method
and with Sachenkov and Klementev (1980) that was solved experimentally. The comparisons with those
methods were carried out for the following isotropic material, shell and loading properties:

E=211x10° (MPa), v=03, p=8x10° (kg/m’), h=13x10"* (m),
M =225%102(m), m=8x102(m), i=1, g¢o=225(MPa/s), Ai=12, y=A40°

5. Conclusions

The stability of truncated conical shells of functionally graded material subjected to external pressure
varying as a power function of time was investigated. Taking the large values of loading parameters into
consideration, analytic solutions are obtained for different initial conditions for critical parameters values.
Results were found to vary significantly when material distribution was varied by changing the values of the
power law exponent, which controls the volume fraction of the different materials in the FGM shell. It was
also found that reasonable control could be achieved on the critical parameters values by correctly varying
the power law exponent. A validation of the analysis has been carried out by comparing results with those
in the literature and has found to be accurate.
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